

# ACETYL-L-CARNITINE SUPPLEMENTATION FOR THE TREATMENT FOR DEPRESSIVE SYMPTOMS: A SYSTEMATIC REVIEW AND META-ANALYSIS

Nicola Veronese, MD National Research Council Padova, Italy





#### **CONFLICT OF INTEREST DISCLOSURE**

I have no potential conflict of interest to report



## INTRODUCTION

- Depression is common and affects about 350 million people worldwide and was **the second leading cause** of global disability.
- •Alterations of fatty acids and lipid metabolism, important contributors of neuroplasticity, often occur in depressed persons.
- **Carnitine** appears to modulate the activity of several neurotrophic factors, cell membranes, lipid metabolism, and neurotransmitters in nervous tissues.

## **ROLE OF ALC IN DEPRESSION**





Wang SM et al. J of Psych Res, 2014: 30e37.



## **AIMS**

- •A recent narrative review reported that ALC may be potentially effective and tolerable option for people affected by depression, in particular who are **vulnerable** to **adverse events** from antidepressants, such as **older people**.
- To summarize the current evidence regarding the use of ALC as anti-depressant agent
  - compared to placebo (or no intervention)
  - compared to common antidepressant agents.

## **METHODS**



- Search strategy (until end 2016)
- 1. RCTs, ALC, depressive symptoms.
- 2. Several databases.
- 3. Full texts/conference abstracts, any language.

#### Inclusion/exclusion criteria

| Inclusion                             | Exclusion                           |
|---------------------------------------|-------------------------------------|
| RCTs                                  | Observational                       |
| ALC (also as add-on)                  | Not validated scales for depression |
| Reporting data on depressive symptoms | No data regarding depression        |

- Outcomes/statistical analysis
- 1. SMDs→ changes of depressive symptoms in ALC vs. controls.
- 2. Random-effect model  $\rightarrow$  12>50%  $\rightarrow$  meta-regression/sensitivity analyses.
- 3. Publication bias.

# **RESULTS (1): PRISMA**





# **RESULTS (2): PLC/NONE**



#### Nine RCTs, 231 ALC vs. 236 controls; follow-up: 8 weeks

| Study name              |                      | Statistics for each study |          |        |                |         |         | San | nple size | Std diff in means and 95% CI |  |  |  |
|-------------------------|----------------------|---------------------------|----------|--------|----------------|---------|---------|-----|-----------|------------------------------|--|--|--|
|                         | Std diff<br>in means | Standard<br>error         | Variance |        | Upper<br>limit | Z-Value | p-Value | ALC | Controls  |                              |  |  |  |
| 3ella et al., 1990      | -1,542               | 0,294                     | 0,086    | -2,119 | -0,966         | -5,244  | 0,000   | 30  | 30        | <del>     </del>             |  |  |  |
| Fulgente et al., 1990   | -2,259               | 0,330                     | 0,109    | -2,907 | -1,611         | -6,837  | 0,000   | 30  | 30        | │ <del>│ ■</del>             |  |  |  |
| Garzya et al., 1990     | -0,923               | 0,398                     | 0,158    | -1,703 | -0,144         | -2,322  | 0,020   | 14  | 14        | │                            |  |  |  |
| Gavrilova et al., 2015  | -1,211               | 0,344                     | 0,118    | -1,885 | -0,537         | -3,520  | 0,000   | 20  | 20        |                              |  |  |  |
| Gecele et al., 1991     | -2,734               | 0,526                     | 0,276    | -3,765 | -1,704         | -5,201  | 0,000   | 14  | 14        | <del></del>                  |  |  |  |
| lagen et al., 2015      | -0,123               | 0,236                     | 0,056    | -0,586 | 0,339          | -0,522  | 0,602   | 36  | 36        |                              |  |  |  |
| Malaguarnera et al., 20 | 011-0,794            | 0,256                     | 0,065    | -1,295 | -0,293         | -3,106  | 0,002   | 33  | 33        |                              |  |  |  |
| Rossini et al., 2007    | -0,183               | 0,213                     | 0,045    | -0,600 | 0,234          | -0,858  | 0,391   | 42  | 47        | <del>     </del>             |  |  |  |
| Tempesta et al., 1987   | -0 618               | 0 418                     | 0 175    | -1 437 | 0.201          | -1 478  | 0 139   | 12  | 12        |                              |  |  |  |
|                         | -1,104               | 0,277                     | 0,077    | -1,646 | -0,562         | -3,991  | 0,000   | 231 | 236       | •                            |  |  |  |

#### **ALC Controls**

# **RESULTS (2): AGE**



| Group by | Study name               |                      | <b>Statistics</b> | for each       | study          |         | Std diff in means and 95% CI |             |             |      |      |
|----------|--------------------------|----------------------|-------------------|----------------|----------------|---------|------------------------------|-------------|-------------|------|------|
| age      |                          | Std diff<br>in means | Standard error    | Lower<br>limit | Upper<br>limit | p-Value |                              |             |             |      |      |
| older    | Bella et al., 1990       | -1,542               | 0,294             | -2,119         | -0,966         | 0,000   |                              | +=-         | -           |      |      |
| older    | Fulgente et al., 1990    | -2,259               | 0,330             | -2,907         | -1,611         | 0,000   |                              | <b>≡</b>  - |             |      |      |
| older    | Garzya et al., 1990      | -0,923               | 0,398             | -1,703         | -0,144         | 0,020   |                              | —           | ■—          |      |      |
| older    | Gavrilova et al., 2015   | -1,211               | 0,344             | -1,885         | -0,537         | 0,000   |                              | <b>-</b>    | <b>—</b>    |      |      |
| older    | Gecele et al., 1991      | -2,734               | 0,526             | -3,765         | -1,704         | 0,000   | I—                           | ━—          |             |      |      |
| older    | Tempesta et al., 1987    | -0.618               | 0 418             | -1 437         | 0.201          | 0.139   |                              |             | <del></del> |      |      |
| older    |                          | -1,524               | 0,290             | -2,093         | -0,955         | 0,000   |                              |             | > <b> </b>  |      |      |
| younger  | Hagen et al., 2015       | -0,123               | 0,236             | -0,586         | 0,339          | 0,602   |                              |             |             |      |      |
| younger  | Malaguarnera et al., 201 | 1 -0,794             | 0,256             | -1,295         | -0,293         | 0,002   |                              | -           | ━-          |      |      |
| younger  | Rossini et al., 2007     | -0,183               | 0,213             | -0,600         | 0,234          | 0,391   |                              |             | -           |      |      |
| younger  |                          | -0,351               | 0,204             | -0,751         | 0,049          | 0,085   |                              |             |             |      |      |
|          |                          |                      |                   |                |                |         |                              | _           |             |      |      |
|          |                          |                      |                   |                |                |         | -4,00                        | -2,00       | 0,00        | 2,00 | 4,00 |

**ALC** Controls

# **RESULTS (3): ANTIDEPR**



#### Three RCTs, 162 ALC vs. 162 controls; follow-up: 12 weeks



**ALC Antidepressant** 



# **RESULTS (4): ADVERSE EVENTS**



**ALC** Controls

## **CONCLUSIONS**



- ALC supplementation appears to confer a significant decrease in depressive symptoms compared to placebo/no intervention.
- ALC appears to have a similar effect to some common antidepressant agents with significantly fewer side effects.
- The use of ALC is safer than some traditional antidepressants suggesting a potential role of ALC for treating depression in older people.